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SUMMARY 

The purpose of this paper is to present a new algorithm for the resolution of both interior and boundary layers 
present in the convection-diffision equation in laminar regimes, based on the formulation of a family of 
polynomiakxponential elements. We have canied out an adaptation of the standard variational methods (finite 
element method and spectral element method), obtaining an algorithm which supplies non-oscillatory and accurate 
solutions. The algorithm consists of generating a coupled grid of polynomial standard elements and polynomial- 
exponential elements. The latter are able to represent the high gradients of the solution, while the standard 
elements represent the solution in the areas of smooth variation. 
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1. INTRODUCTION 

In convection4iffusion problems, when the convective term dominates the diffusive term, boundary 
and interior layers can appear due either to the boundary conQtions or to the source term. Obtaining a 
good representation of these boundary layers by means of numerical methods has been a main focus of 
activity for some time, since when the diffusion D tends towards zero, several oscillations (without 
physical meaning) appear in the solutions supplied by centred schemes.' The Galerkin formulation of 
finite elements avoids this problem by imposing restrictions on the size of the elements placed in the 
boundary layer. In spectral techniques (spectral elements) it is necessary to increase the order of 
polynomial interpolation inside the boundary layer. This requires either a geometrical non-conforming 
formulation (mortar elements) or a coupling with finite elements in order to avoid an excessive number 
of degrees of freedom.24 

To solve the above problems, several methods have been developed. In spectral techniques the 
Galerkin formulation is neglected within the zone of the boundary layer by using a mixed spectral 
element method-collocation method.' In the case of the finite element method the streamline upwind 
Petrov-Galerkin technique is the method with the best proper tie^.',^^ 

In this paper we present a new finite element technique to solve the two-dimensional steady 
convection4iffusion equation. The method is based on the following two ideas. 

1. The behaviour of the solution within the boundary layer zone can be simulated using exponential 
functions. lo  
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2. This exponential behaviour can be represented by an adequate basis of exponential fbctions. 

The technique is basically a Galerkin finite element method modifying locally the basis of the space 
of approximation Xj, from information concerning the placement and behaviour of the boundary layers. 
It involves making a structured mesh such that the directions of high gradients in the solution coincide 
with the boundary of some mesh elements. In this mesh the bases of elements located in the zone of the 
boundary or interior layer are modified, whereas the bases of the other elements are preserved. 

In order to explain the technique, we can start with a one-dimensional example allowing us to 
establish the main features of the method. 

2. STATEMENT OF THE PROBLEM 

2.1. A unidimensional example 

Consider the unidimensional convection4iffision equation 

4=0 ,  x = o ,  

=o, x = 2 .  d4J - 
dx 

The local behaviour of the solution of equation (1) can be studied near the source term by isolating the 
interval ] 1 - E ,  1 [ and solving the equation 

d2$ d$ 
dx2 dx -D -+v -=O,  X E ] l  - & ,  l[. 

We take as boundary conditions 
- 
4J(l -&)  = 0 (3) 

for appropriate E and 

$(I) = K ,  (4) 

where K is the unknown value at x = 1 of 4 in equation ( I ) .  The solution of equation (2) is given by 

4 = A + Be('fDk, ( 5 )  

with A and B having values which depend on the boundary conditions. Therefore, if v dominates 0, the 
solution of equation (1) presents a high gradient around the point x=  1. In the following we will 
explain how information about the local behaviour of the solution can be used in order to obtain a good 
representation of the interior layer. 

= [ 1, 21. Notice that we have made the 
upper edge of the first element R' coincide with the point where the interior layer is located. Let the 
space of approximation be 

Consider the grid formed by two elements R' = [0, 11 and 
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where V;(x),A(x)) denotes the vectorial subspace generated by two functionsfi andfi. Let 

n u s  the Galerkin formulation in f h  will be: find 4 h  E&, such that for all \Yh E&,, 

a& Y I h )  = k W ) .  (8) 

Starting from equation (8) and the above boundary conditions, we obtain the solution in &, as 

Therefore the L2 and H' errors of the solution are of the order of the approximation error of the 
exponential e('lDMx - by eAx-'), i.e. 

114 - (bhllL2 = qlle(u/D)(x-') - edX-')IIL2) (13) 

n u s  the accuracy of the & solution depends on an accurate approximation of the exponential 

By using the information supplied by problem (2), it is possible to obtain the order of the exponential 
,(v/DUx - 1) 

to place in the basis of element Q' in order to get an accurate solution of problem (1). 

2.2. Introduction to the bidimensional problem 

present study. Firstly we will define the hypothesis and notation to be assumed. 
Generalization of the former case to the bidimensional case is not evident and this is the aim of the 
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Notation and hypotheses 

Let v be a field of velocities in an open subset !2 E Rz with regular boundary 82  = r. The inflow 
boundary will be denoted by r- = {x E r: (v, n) < O}, where n is the outward unit normal to r. 
r+ = {X E r: (v, n) > 0} will be the outflow boundary and To the set {x E r: (v, n) = 0). 

Units are SI units unless otherwise specified. 
The convection4ffusion equation 

-DA4 + v V ~  = f ( ~ ,  y )  (15) 

is considered. TD will be the zone of the boundary r with Dirichlet boundary condition and rN will be 
the zone with Neumann condition. 

Two hypotheses are assumed. 

1. The vectorial field of velocities v(x, y )  is known and derives from the resolution of either a scalar 

2. The source term does not affect the streamlines of the velocity field. 

As in the one-dimensional case, the weak variational Galerkin formulation of the equation has been 

potential or an incompressible viscous flow problem. 

considered: 

Generalization of the method shown in the above example requires answers to the following 

1. How does one make up a grid which locates the boundary layers? 
2. How does one modify the space of approximation Xh by introducing exponential functions in the 

basis in order to simulate the behaviour of the boundary layers? 

The starting point must be the knowledge of the behaviour and situation of the boundary layers. In the 
following section we present a brief summary of the main classical results concerning this subject, 
which will be used as the base for the construction of a structured mesh made up of quadrangular 
elements able to locate the boundary layers. Section 4 covers this subject. In Section 5 we present the 
modifications which are required in order to define a new approximation space &,. In Section 6 we cover 
the problems of the calculation of shape functions and the attainment of quadrature formulae necessary 
to establish the algebraic system of equations. Finally, in Section 7 we summarize the main steps of the 
algorithm. Moreover, a numerical study of the properties of the method will be made through a set of test 
problems. 

questions. 

3. RESULTS CONCERNING BOUNDARY LAYERS IN BIDIMENSIONAL PROBLEMS 

There is a specific bibliography about the interior and boundary layers in convectiondiffusion 
problems."-'3 In this section we sum up the main outcomes concerning this topic, which have been 
used in the following sections in order to make up structured grids and set up the functions that 
simulate the behaviour of the solutions in the boundary layer. The main characteristics of boundary 
layers in which we are interested are 

(i) their spatial location 
(ii) directions with high gradients in the solution 

(iii) the width of interior and boundary layers. 



RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS 647 

To study the width of a boundary layer, we assume that the field of velocities is r e f d  to a local 
curved co-ordinate system (s, t), where the s-direction is the streamline direction and the tdirection is 
orthogonal to the streamline direction. If the velocity v is (ux, u,,) referred to Cartesian axes, we can 
assume v = ( 1 u I , 0) as a linear approximation of v in the (s, t) system. 

Interior layers generated by an intenor source point 

An interior source point generates an interior layer in a nearly circular region around this point in the 
streamline direction, its size being O(D/u). Downstream from this point an internal layer develops along 
the streamline in the orthogonal direction, its width being o<J(rD/u)), where r is the distance 
downstream from the source point. 

Interior layers generated by a boundary condition 

If a boundary layer develops owing to a boundary condition, it can be located in a neighbourhood of 
the part of the boundary which generates it. If the outflow boundary r+ generates the boundary layer, 
then the directions of the high gradients are the streamlines. The width of an outflow boundary layer is 
O(D/u). If the boundary layer is generated by a tangential boundary, the directions of the high gradients 
are orthogonal to the streamlines. In this case the boundary layer is parabolic in profile, with thickness 
O(J(Dr/tl)), where r is the distance along the tangential boundary. 

Interior layers generated by a distributed source 

The streamlines passing through a distributed source produce a shadow zone downstream, developing 
an interior layer containing this area. The behaviour of the interior layer is similar to the above cases. 

3.1. How to simulate a boundary layer by means of an exponential function 

Knowledge of the width of the boundary layer allows us to compute the exponent of an exponential 
function simulating this behaviour. 

Let 6 be the width of the boundary layer developing along a streamline, measured on a line orthogonal 
to the streamline. Around the zone of the boundary layer we consider a linear approximation of this line. 
In local co-ordinates (s, t)  this line can be mapped into the interval [0, 11. We assume that a high 
gradient occurs between the points x = 1 - 6 and x = 1. 

Let q be a positive number. The problem is to determine the exponent p of the exponential edx-') 
such that the value of eAx-') at the point x = 1 - 6 is 10-4, increasing h m  this value up to the point 
x = 1 where its value will be unity. Thus 

e-p6 = 1o-Q, (17) 
i.e. 

In (1 0-9) 
6 

p = -  

and therefore 

p = 06). 

Expression (19) determines the exponent p of the exponential which simulates a boundary layer of 
width 6. 
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Therefore we will have the following. 

In directions orthogonal to streamlines, 

where p is the exponent, 6 is the width of the boundary layer and r is the distance from the source 
point or the distance along the tangential boundary. 

In streamline directions, 

4. STRUCTURED MESH GENERATION 

In this section we explain how to build a structured mesh for which the edges of the elements are in the 
high-gradient directions of the solution. 

We know that at an interior or boundary layer a high variation in the solution can appear in the 
directions of streamlines and orthogonal to them. Therefore, to build a structured mesh, it is adequate to 
take the flow lines and their orthogonals as mesh lines. In Reference 14 the author proposes a simple 
procedure to generate this grid. Let us look at this procedure. 

4.1. Construction of streamlines and their orthogonals 

1. The flow lines are built by integration from the inflow boundary r- of the differential equation 

dY 21. 
dx - V,’ 
_ - _  

2. The lines orthogonal to streamlines are built by integration of the differential equation 

from the boundary To. 
Finite differences are used for numerical integration. 
Figure 1 shows a structured mesh built from the streamlines and their orthogonals. 

4.2. Geometrical mapping 

Let Qi be an element of the structured mesh and let i?f be a master element defined as 
R’= [-I, 11 x [-1, 11. Let m be the total number of points of interpolation nodes of R’ and 8. We 
consider the mapping ri: 6 + Ri defined by 

- .  

i= 1 
m 

i= 1 
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Figure 1 .  Structured mesh 

where {Ni((, q)}:, are the Lagrange interpolant polynomials for the geometry. 
For each element R' this bijective mapping generates a local grid of curved co-ordinates from the 

lines [ =const. and q =const. The high gradients of the function will occur along these lines. The 
exponential changes in an interior or boundary layer will occur in these directions, because the elements 
are generated from the streamlines and their orthogonals. 

In the following section we define the basis of the elements placed in the boundary layer from the 
master element a. 

Remark 

It is possible to make up an unstructured grid by proceeding as follows. 

1 .  In the zone where the boundary layer is located. We copy the boundary, offsetting it towards the 
interior following the normal direction. From control points in the boundary translated in the 
normal direction, the boundary layer elements are built. 

2 .  In the external zone. We proceed by generating an unstructured mesh geometrically compatible 
with the previous grid. 

Figure 2 shows a mesh generated by means of this procedure. 

5 .  DEFINITION OF THE SPACE OF APPROXIMATION X,, 
In the previous section an explanation of how to build a structured mesh by splitting the domain into 
quadrangular elements has been given. In the zone of the boundary layer there are some elements 
whose edges are in the direction of high variation in the solution. 

The zim of this section is to define the space of approximation gh in order to obtain a good 
representation of the boundary layer. This involves 

(i) defining the space of approximation of the elements placed in the boundary layer by adding to 
the polynomial bases exponential functions able to represent the local behaviour of the solution 

Figure 2. Unstructured mesh 
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(ii) giving coupling conditions between these elements and the polynomial standard elements 

(iii) setting up a method in order to compute the order of exponential functions introduced in the 

To define the basis functions, we use the following idea. For convection-dominated flows, i.e. for 
flows with large Reynolds number, we would like to have basis functions which act like solutions of the 
convection-difision equation; that is, we want to be able to represent narrow Gaussians which spread 
slowly as one goes downstream. In this sense we will define in this section the polynomial-exponential 
elements. 

placed outside the boundary layer 

new bases. 

5.1. Polynomial-exponential elements 

ordinates (c, q). 
We define the elements situated in the boundary layer by considering a master element fi of co- 

5.1.1. Unidirectional Element. Let 

be a polynomial basis and 

be a family of exponentials, where J is a finite set of positive indices. In the direction q we take the 
basis 

with q E [-1, 11. In the direction c we take the basis 

{ L i ( O ) L  3 (29) 

with c €  [-1, 13. 
The reference element fi is defined as follows. 

1. The tensorial product of both bases is taken as the interpolation basis in the square reference 
element. PEl ( f i l )  denotes the space of functions generated by the tensorial product, i.e. 

2. The interpolation nodes are the Cartesian products of the interpolation nodes in each direction. 
They are chosen according to the interpolation points of the polynomial basis. In this way it is 
easier to couple them with polynomial standard elements. 

This element is able to represent an exponential behaviour in one direction in fi. We know that the 
mapping T ~ :  fi +. Qi generates a local grid of curved co-ordinates (s, t),  where the lines [ = const. and 
q = const. coincide with the streamlines and their orthogonals respectively. Therefore the exponential 
behaviour in one direction at element fi will transfer to element R' in the streamline directions or their 
orthogonal s . 
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5.1.2. Polynomial-ponential element in both directions. The above families of exponentials and 
polynomials have been considered. In the direction q the basis 

{ei(q-')},ej U tLi(q))L 

is taken, with E [- 1, 11. In the direction ( the basis 

is taken, with C E  [-1, 13. 
The reference element is defined as follows. 

1. The tensorial product of both bases is taken as the interpolation basis in the square reference 
element. PEz(f&) denotes the space of functions generated by the tensorial product, i.e. 

2. The interpolation nodes are the Cartesian products of the interpolation nodes in each direction. 

This element is able to represent exponential functions in both directions in fi and thus in R'. 

They are chosen according to the interpolation points of the polynomial basis. 

5.2. Study of the coupling conditions between elements 

spectral elements). We are interested in the condtions of coupling between elements. 
Over any oriented mesh there are polynomiakxponential elements and standard elements (finite or 

5.2.1. Coupling of polynomiakxponential boundaries. When boundary layer elements are 
adjoining, they must be coupled over the polynomial-exponential boundaries. It can be proved that 
if the order of exponentials is the same, then continuity between these types of boundaries exists. 

The width of the boundary layer can change along the domain. Therefore the order of exponentials 
varies for two adjacent elements. This fact can be represented by using a nonconforming formulation. 
Among other formulations the pointwise matching technique has been chosen because of its 
~implicity.~*" In this formulation the same value of the function at the nodes of the boundary inter- 
elements is imposed. 

Let r" be the common polynomial-exponential boundary for two adjacent elements R' and N and let 
t tk  be the nodes of this boundary, with k = 1, . . . , N. Let v' and u' be the solutions in the elements a' and 
RJ respectively. 

The non-conforming coupling condition will be 

d(nk) = vi(,k), k = 1 , .  . . , N. (34) 

5.2.2. 
adjacent 
elements 

Coupling of polynomial boundaries, When two polynomiakxponential elements are 
in the polynomial boundary, they must be coupled. In the same way, when two standard 
are adjacent, their boundanes must also be coupled. 

Three possibilities exist in order to couple these boundaries. The choice of one or another depends on 
factors such as the smoothness of the solution outside the boundary layer, the simplicity of the 
implementation and the size of the discrete problem. 

1. Coupling with the same polynomial degree. Considering that the restrictions of the hc t ions  at 
the common boundary are polynomials of degree N, by forcing them to coincide in the N + 1 
points of the border, they must therefore coincide in the whole border. 



652 F. OLMOS, F. CHINESTA AND R. TORRES 

2. Coupling with diffewnt polynomial degrees. The polynomial order in each element can vary; 
however, continuity can be maintained. In this case the following condition must be imposed the 
value of the function along the common boundary is determined by the finest grid." 

3. Non-confonning coupling. In this case a pointwise matching technique or an integral matching 
technique (mortar elements) must be used.24 

Remark 

problematic.24.'6 
It is well known that the pointwise matching approach to non-conforming elements can be 

5.2.3. Coupling of a polynomial boundary with a polynomial-exponential boundary. This coupling 
is given between polynomial-exponential elements and polynomial elements. 

Suppose that the restriction over the polynomial-exponential boundary is a polynomial of degree N 
and one exponential. Under these conditions it is possible to carry out a conforming coupling between 
elements with the following restrictions. 

1. The degree of the polynomial of the polynomial boundary must be less than or equal to N. 
2. The function solution over the common boundary is determined by its values at the N+ 2 points 

of the finest grid. 

Summary 

From the above the coupling condition can be summarized. 
The value of thejimction along the boundary between two adjacent elements is determined by its 

This condition will be denoted by CC (coupling condition) and can be written as follows. 
Let Mi and M /  be two grids over the common boundary rv of elements Qi and R'. Let us assume that 

values at the points of the finest gnd. 

Mi is coarser than M,. For all x E Mi, 

ui lp(x)  = u j l p ( x ) ,  (35) 
where d\,-,,(x) is the restriction at the boundary of the solution on element iIi and vj)p(x) is the 
restriction on element RJ. 

According to the type of boundary, the previous condition causes continuity or non-continuity of the 
function. 

5.3. Definition of the space of approximation 

Let us consider a structured mesh on the domain 0 so that 

where Ri denotes a standard elernat located outside Fhe zune sf the born- layer and 0: denotes an 
element situated inside the boundary layer. Let PK(n ') dcii~te the space of polynomials of degree < K. 

The space of approximation is defined as 

& = (V E L2(n)/Vlq E PK(R:); ( V O  Ti)lf, E (pEl(hz,) 01 pE2(fi,)); (4r') 
satisfies the coupling condition and the boundary conditions)}. (37) 
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5.4. Numerical study of the choice of the order of aponentials 

One of the most important aspects of the method formulated is the adequate choice of the number and 
order of exponentials in the bases of fi. The efficiency of the method is due to the property of the 
exponential functions that enables them to simulate a very strong variation using few exponentials and 
with small error. 

5.4.1. Apprvximation e m r  of high gradients in a basis of exponentialfinction. Let us carry out a 
study of the previous subjects. We will assume that the zone of the boundary or interior layer is 
simulated by exponentials whose order can vary in the interval [ni, nf], with ni and nf natural numbers. 
Our aim is to establish a basis of exponential functions which correctly represent the exponential 
whose exponents belong to the interval [ni, nf].  

Apprvximation e m r  in a basis il# 

Definition I 

Let 

) i d  (38) il# = [e4z-l) 

be an exponential basis, where Z is a finite set of indices, and let e"@-') be a known exponential, with 
n E [n,, nf] and n, and nf  natural numbers. We define the Lz error of approximation of the exponential 
e"('-') in this basis by 

where ci are the coefficients of the projection of e"(l-l) over the space generated by A?. 

Definition 2 

We define the accumulated error by 

with ni and nf natural numbers. 
This error is obtained by the addition of the approximation error in the basis I of the exponentials 

whose orders are n E [ni, nf] ,  with n an integer number. It is a measure of the accuracy of the 
representation of the previous exponential functions in the basis A?. It can be proved that the 
approximation error of the derivative of e'@-l) is n times the L2 error of the fimction e"(z-l), so that 
the H' error of e"(z-l) in the basis il# is (n + l)En. 

Suppose that the values ni and n f  represent the lower and upper exponents of an interval whose range 
contains the exponents of the exponential functions simulating the high @en&. Suppose that we 
choose [ni, nf] and we formulate the problem of determining the exponents of the basis I such that the 
accumulated error is minimum. 

Once the number of exponentials in the basis il# has been fixed, the solution of this problem provides 
the exponents of the exponentials that minimize the approximation error for the exponentials whose 
exponents are within the interval [ni, nf] .  Owing to the relationship between the L2 and H' errors, the 
exponents minimizing the L* error also minimize the H' error. 
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Table I. Range of variation in error 

Exponential 

10 
1 1  
12 
13 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
I70 
180 
190 

L’ error 

0.000689672 
0400332962 
O.OOOI428 12 
4.88442 x lo-’ 
5.79728 x lo-’ 
6.23552 x lo-’ 
2.07978 x 
3.40249 x 

237135 x lo-’ 
4.3369 x lo-’ 
1.34776 x lop7 

4.47781 x lo-’ 

3.48545 x lo-’ 
8.06447 x 10-7 
2.87574 x 
6.41325 x 
1.14005 x 
1.77023 x lo-’ 
2.5123 x 

4.24547 x lo-’ 
5.19524 x lo-’ 

3.34454 x 10-5 

H‘ error 

040768923 
040405746 
0-001 88986 
0.000698597 
0.001 243 14 
0.00201 288 
O~OoO9 1487 1 
0400199793 
5.81744 x 
1.60846 x 
3.23897 x lo-’ 
1.24532 x lo-’ 

8.03488 x lo-’ 
2.57108 x 

0.000322353 
0.000789929 
0.001 52531 
040255267 
0-0038812 
040550854 
040742398 
0.00961 115 

Example 

problem. 
Let us consider [ni, nf]  = [lo, 2001. Choose three functions in the basis and pose the following 

1. Compute the exponents aI, a2 and a3 minimizing the error of representation in the basis of the 

2. Compute the accumulated error. 
3. Compute the error for each exponential. 

For the computation of exponents ui under the condition that the error E,&) is minimum, an 
algorithm of gradient, together with the bisection method for the determination of step length, has been 
used. The results obtained for the three exponentials are as follows. 

exponentials whose exponents are in [ 10, 2001. 

1. The exponents which minimize the accumulated error are 15.0071, 62.9203 and 97.3525. 
2. The accumulated error is 4.8 x 1 OP3. 
3. The Lz and H’ errors are given in Table I. 

Therefore it is possible to represent a range of variation in exponentials with small error and using few 
exponentials. 

5.4.2. How to compute the exponentials to add to boundary layer elements. We know that in local 
co-ordinates (s, t) the relationship between the width of the boundary layer and the exponent p of the 
exponential that simulates this boundary is 

P = .(;I 
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Therefore we will have the following. 

In directions orthogonal to streamlines, 

655 

where p is the exponent, 6 is the width of the boundary layer and r is the distance from the source 
point or the distance along the tangential boundary. 
In streamline directions, 

The above relationship supplies the interval of variation in the exponents in the sdirection and 
t-direction in element Rl. 

Let us look at the relationship between the intervals of the exponents in element R' and the reference 
element fi. We will consider a linear approximation of element R' referred to a curved co-ordinate 
system (s, t). In this system the linear approximation will be R' = [0, a] x [0, b]. 

Suppose that in the s-direction there is an exponential eP(S-u) with exponent p .  To compute the 
exponent for the basis of fi, we consider the linear transformation T: fi -+ [0, a] x [0, b] defined by 

(44) 
U 

s = - ( C  + l), 2 

(45) 
b 
2 

t = -(q + 1). 

Thus we will have 

(46) 

that is, if the exponent of the exponential in element Ri is p ,  then p(L/2)  is the exponent in fi, where L 
is the length in the s-direction for element R'. 

Once we know the interval of the exponents in h, we must determine the basis of the exponential to 
add to h. To this end we fix the number of exponentials in the basis. Then, applying the minimization 
algorithm for the accumulated error considering the interval calculated above, we will have the 
exponential to add to fi. 

&-a) = ~ [ ( a / 2 ) ( 5 +  I )-a1 = P [ ( ~ / ~ X C -  1 )I. 

6 .  SHAPE FUNCTIONS AND QUADRATURE FORMULAE 

6.1. Shape jimctions 

must be calculated. 

consider the non-nodal approximation 

To obtain the nodal approximation, the expression of the shape functions for the master element fi 

Let 4'{[, q) be the functions resulting fkom the tensorial products of the bases in both directions. We 

i= 1 

where ui are the approximation coefficients and n is the total number of functions in the basis. 
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Let N,-((, V )  be the shape functions to be calculated. The nodal approximation will be 
n 

WC* V )  = C ~ ( C V  V W i ( C *  v).  
i= I 

Taking into account the uniqueness of the expression a((, q), we can obtain 

“i(C* q)lT = [ $ i ( C y  v ) I ~ [ ~ ~ ( c ,  VI~I-’. 

(48) 

(49) 

6.2, Quadmture formulae 

It is well known that when an exponential function is integrated by a polynomial quadrature formula, 
the quadrature errors increase by a factor of a”+’/(n + l)!, where a is the order of the exponential and n 
is the order of the polynomial approximation. Therefore the use of Gauss quadrature formulae for 
polynomials is not suitable for the integration of polynomial-exponential functions because of the large 
number of points of integration necessary. 

To integrate products of functions of the basis 

and its derivatives, we must compute the weights and points of a quadrature formula. Let p be the 
number of functions to be integrated and let f(z) be a linear combination of these p functions: 

There are two possibilities. 
If the p points of the quadrature are chosen using the equation 

we obtain a linear system with p equations and p unknowns, 

with i = 1.2, . . . , p ,  whose resolution supplies the weights (wr)L, .  
The other possibility is to economize the number of points and weights by considering the points and 

weights as free. Taking an even number of functions, p ,  a non-linear system with p equations and p 
unknowns (wr, zr):f, can be obtained: 

with i = 1,2,  . . . , p .  To solve this non-linear system, a globally convergent method must be used.” 
Therefore we need p weights to integrate p functions in the case where we work with p fixed points, 

and p / 2  weights and p / 2  points in the opposite non-linear case. 
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7. ALGORITHM STEPS AND NUMERICAL EVALUATION OF THE ALGORITHM 
The proposed method consists of the discretization of the Galerkin formulation of the problem over ii 

structured mesh made up of both standard (finite or spectral elements) and polynomial-xponential 
elements. In this section the steps of the algorithm are summarized. Moreover, numerical evaluation of 
the properties of the method will be carried out by means of a set of test problems. 

7.1. Inputs and algorithm steps 

construction procedure of the matrix of the discrete problem. 
The implementation of the method does not differ from the standard method with regard to the 

The main differences are as follows. 

1. A structured mesh which locates the boundary layer zone can be built from the information 

2. Since exponential functions must be added to some elements, the shape functions of such 
concerning the boundary layer. 

elements and the quadrature formulae are specific to the method. 

Inputs 

The algorithm needs to be aware of three inputs. 

1. Input 1. The position of the boundary layer or equivalently the placement of control points on the 

2. Input 2. Estimation of the width of the boundary layer. 
3. Input 3. Knowledge of the field of velocities. 

domain to locate the boundary layer. 

Algorithm steps 

Step I (using Inputs 1 and 3) 

(a) Starting from control points on r-, compute the streamlines by solving 

(b) Starting from control points on To, compute the lines orthogonal to streamlines by solving 

(c) Classify the elements as (i) standard (finite or spectral), (ii) polynomial-xponential in one 
direction (PEl) or (iii) polynomial-exponential in two directions (PE2) and determine the 
degrees of polynomial interpolation. 

Step 2 (using Input 2). Compute the order of exponentials to include PE1 and PE2 by calculating the 
following two items: 
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(a) the interval of variation in the exponents for the exponential functions, taking into account that 
the relationship between the exponents and the width of the boundary layer is, (i) in directions 
orthogonal to streamlines, 

p being the exponent, 6 the width of the boundary layer and r the distance to the source point, 
and (ii) in streamline directions, 

p = O(i)  = 06) 
(b) the basis of exponentials minimizing the accumulated error (see the algorithm in the section 

referring to exponentials). 

Step 3. Calculate the shape functions of PE1 and PE2 elements by solving 

(Here 4,{C, u)  are the functions resulting from the tensorial products of the bases in both directions and 
Nl(t ,  q) are the shape functions.) 

Step 4. Compute the weights and quadrature points for PE1 and PE2 elements by solving 

w i t h i = 1 , 2  ,..., p .  

Step 5. Calculate the bilinear form a($,, Y,) and the linear form I ( f )  over each element and 
assemble the matrix, taking into account the coupling condition CC between elements. (The coupling 
condition CC is as follows. Let MI and MJ be two grids over the common boundary r" of elements !2 
and QJ. Let us assume that MI is coarser than MJ. For all xEMJ,  

V' lp(X)  = V' lp(X) ,  (61) 

where dl,-+,(x) is the restriction at the boundary of the solution on element 0' and vJl,-&) is the 
restriction on element QJ.) 

7.2. Test problems and evaluation of the algorithm 

We are interested to know the behaviour of the method as regards 

(i) the error of approximation 
(ii) the computational cost 

(iii) the behaviour of the method when D decreases. 

We will consider the following test problems in order to study these three points. 
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7.2.1. Problem I :  Interior layer due to a Dimc delta source term. The convection4iffusion 
equation has been considered with a Dirac delta source term, constant diffusion D and constant 
velocity v:  

r#J = 0,  x = 0 , y  = 2 , y =  0 ,  (62) 

- 0 ,  x = 2. a4 _ -  
an 

We have considered two implementations, taking one exponential in the streamline direction and two 
or three exponentials in orthogonal directions. 

Data 

The implementation data of the problem are the following: 

(i) domain [0, 21 x [0, 21 
(ii) v=(3.75 x 0) 

(iii) escape point localized at (1, 1) and with volume escape k= 8-33 x lop6 
(iv) D=0.15 x 

The Peclet and Reynolds numbers for this problem are Pe = 500 and Re = 497. 

Localization of the interior layer and behaviour 

An interior source point generates an interior layer in a nearly circular region around this point in the 
streamline direction, its size being O(D/v). Downstream from this point an internal layer develops along 
the streamline in the orthogonal direction, its width being O(,/ (rD/v)) ,  where r is the distance 
downstream from the source point. 

Algorithm steps 

(a) Grid generation 

The streamlines and orthogonals are reduced to lines parallel to the co-ordinate axes. The gnd shown 
in Figure 3 has been considered, elements 1 and 8 being of type PE2 and the remainder of type PE1. 

@) Exponentials to add to the basis 

The order of exponentials in streamline directions is O(v/D) = o(250) in the element of the mesh. 
Therefore in the reference element the exponent is O(125). The interval of variation in the exponentials 
in directions orthogonal to streamlines, calculated from the width of the interior layer, is [ 15, 701. Thus 
the interval to represent in the reference element is [7, 351. However, the interval [5, 801 has been 
considered in order to compensate for proportionality factors. 

Bases for huo exponentials. Using the algorithm of minimization of the error, for exponentials 7 and 
20 the accumulated error is 1.3 x lop2. Therefore we consider a conforming mesh formed by two PP2 
elements and six PPl elements whose bases are 

(i) PE2 element in direction C: LO(() ,  Ll(C), 
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Figure 3.  Scheme of polynomial+xponentiaI elements 

(ii) PE2 element in direction q: Lo(q), LI (q), Lz(q) ,  e7(q-'), e20(q-1) 
(iii) PEl element in direction C: Lo([), Ll(C), L2(C) 
(iv) PE1 element in direction q: Lo(q), Ll(q) ,  L2(q), e7(q-1), e20(q-1) 

where Li are Legendre polynomials. There are 81 nodes in the grid, 49 of which are interiors. 

Basesfor three exponentiuls. Using the algorithm of minimization of the error, for exponentials 7, 
20 and 30 the accumulated error is 6-8 x lop3. In this case a conforming mesh formed by two PP2 
elements and six PPl elements has been considered. In fi the bases are 

(i) PE2 element in direction C: h(C), Ll(r) ,  e125(1-1) 
(ii) PE2 element in direction q: Lo(q), Ll(q),  e7(9-'), e20(q-'), e3qq-') 
(iii) PE1 element in direction C: Lo(C), Ll(C), L2(C) 
(iv) PE1 element in direction q: &(q), Ll(q),  e7(qP1), e2qq--'), e3q9-I). 

There are 81 nodes in the grid. 

(c) Quadmture points 

Taking into account that the functions to be integrated are obtained as the products of the functions of 
:>e aSove basis in each direction and its derivatives, we require seven points in the q-direction and three 
points in the [-direction for the PP2 element. For the PPl element we require seven points in the q- 
direction and two points in the C-direction. Therefore the total number of integration points for the mesh 
is 126. 

Results 

Figures 4 and 5 show the solution in the case of two exponentials. Figures 6 and 7 show the solution in 
the case of three exponentials. 

The oscillations in the neighbourhood of the source point in Figure 4 are due to the difficulty in 
npresenting a high gradient with an exponential of order 20. If a third exponential of order 30 is taken, 
the oscillations are removed. 
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Figure 7. Solution with three exponentials 

Evaluation of the ermr 

For the evaluation of the error in the absence of analytical solutions, even for simple geometries, we 

(a) Let @ be the actual solution of the problem. Thus 
have considered the following procedures. 

where @h is the numencal solution obtained and eh is the exact error. Substituting in the equation 

we obtain 

This is a convection4Rusion equation in that the independent term depends on the numerical solution 
ah obtained. To solve this equation, we have considered a triangular mesh formed by linear finite 
elements, which is adapted to the problem from the information obtained from the distribution of the 
residue. The numerical value of eh is taken as the actual value of the error and in particular the L2-norm 
of eh has been considered. 

Remark. The fundamental solution for equation (62) on the whole plane is a Bessel function with a 
logarithmic singularity at the source point." The finite element method (FEM) and the algorithm 
developed cannot represent this fact. It is possible to establish that the value which is assigned to the 
source point by each method depends on the trial hc t ions  and it is different at this point, although it is 
coincidental over other points of the grid. Therefore, if we remove from the domain a small 
neighbourhood around the source point, the distortions due to the former phenomenon are reduced. 

(b) The second procedure to evaluate the error lies in comparing the numerical solution with other 
numerical solutions computed by the Galerkin method or the streamline upwind Petrov-Galerkin 
(SUPG) method. More exactly, we take a non-uniform mesh of triangles; we consider the numerical 
solutions of the equation in that grid for the FEM-Galerkin and SUPG methods and we denote them by 
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and respectively. The solution furnished by the algorithm developed in this work is denoted by 
@EEM. This solution is interpolated over the triangular mesh. We compute the values 

II@PG - %EM l l ~ 2  9 (66) 

(67) 
11% - @ E E M I I L ~  IPPG - @ E E M I I L ~  ll@, - @GIIL~ l l @ ~  - @PGIIL~ 

II @G II L2 II @PG l l L 2  II @G 11L2 lI@GllL2 

which measure respectively the absolute error and the relative error between the solutions which are 
compared. 

Computation of the Lz e m r  

The error computed for the two strategies is as follows. 
(a) We resolve equation (65) over a non-uniform grid with 488 nodes (944 linear triangular elements) 

by removing from the domain a square of side 0.1 centred at the source point: 

(i) )lehlIL2 = 1.5640 x lo-’ for the implementation with two exponentials 
(ii) llehllLz = 5.0963 x 

Figures 8 and 9 show the distribution of error in both cases. 
(b) For the second procedure we have considered the solutions supplied by Galerkin and Petrov- 

Galerkin methods over the former grid. Figure 10 shows the Petrov-Galerkin solution. 
The evaluation of the norms and their quotients has been carried out by working over the full domain 

without removing the neighbourhood around the escape point. The most important fact is that in the 
case of two exponentials (7 and 20) the error defined by 

for the implementation with three exponentials. 

is around 3.4%. By removing a small square around the source point, the evaluated error decreases. 
Working with three exponentials (7, 20 and 30) over the full domain, the error is 1.7% and this 
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decreases if we eliminate the square around the source point. In the Same way, if the absolute error is 
computed, 

we can verify in Tables I1 and 111 that it decreases when working with three exponentials. The results 
for both cases have been tabulated in these tables. 

Remark. If we consider a vectorial field of velocities to determine the exponential order of 
exponential functions, we can take as value of the velocity in each element the average value 
considering the inflow and outflow velocities in the element. 

Figure 10. Petrov-Galerkin solution 



RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS 

Table 11. L2-norm for two exponentials 

665 

Exponentials 7, 20 

lI@PcIIL’ 

ll@GlIL’ 

II @Pc II L2 

0.0523 12 12 10607842 

0.053 1518325217073 

0.05439802401 37801 

0.034309263014138 

0.03492858172641 69 

0.00280232274699 124 

04302868025670 10 149 

1.8 10-3 

Table 111. L*-norm for three exponentials 

Exponentials 7, 20, 30 

0.048 178 102378 1807 

0~0531518325217073 

0.0543980240 137801 

0.0171 556674056386 

0.01 87092346747842 

040280232274699 124 

04302868025670 10 149 

9.12 10-4 
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Figure 1 1. Scheme of polynomiakxponential elements 

We have considered the following example: 

- 0, a4 _ -  
an 

where R is the domain shown in Figure 11 and S1 and S, are specified in this figure. We assume the 
following vectorial field of velocities v = (vx, v,,): 

2 + x  Y - 1  2;. = 44 - 1 v, = v(r) - , r r 
where 

This velocity field is equivalent to a radial flow with a source at point ( -2 ,  1 ) .  The mesh we have 
considered is shown in the same figure. 

If we calculate the absolute values of the inflow and outflow velocities in each element, we obtain that 
the order of exponential functions in PEl elements in streamline directions is O( 167). In PE2 elements 
in directions orthogonal to streamlines this order is between O( 1 3 )  and O(10). 

The solution of this example is shown in Figure 12. 

7.2.2. Problem 2: Boundary layer due to boundary conditions, with gradients orthogonal to 
streamline directions. Let us consider the convection4ifision equation (62) without the source term, 
with the same boundary conditions except for the upwind side. At the inflow boundary we take the 
symmetrization of the function g(y )  = e2s~-0.5), which is denoted byf(y). 

a4 -DA4 + 21- = 0, ( x , Y )  E (0,  1) x (0, I), ax 
= 0 ,  y = 1 , y  = 0,  

4 = f ( y ) ,  x = o ,  
(73) 

- 0 ,  x =  1 .  a4 -- 
an 



RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS 667 

1.44 - 
IU - 
1.20 - 
1.W 

a n  

am 

Figure 12. Solution for a vectorial velocity field 

The velocity is v = (2.6 x 
numbers are Pe = 173 and Re = 172. 

0) and the diffusion is D = 0.15 x loT4. The Peclet and Reynolds 

The analytical solution of this problem is known:" 

where 

The solution is symmetric with respect to the line y = 0.5 owing to the characteristics of the boundary 
conditions and of the velocity field. Therefore, to solve problem (73), we have considered the domain 
(0, 1) x (0, 0.5). On the boundary y= 0.5 the values of the series have been considered. Then the 
problem to be solved is 

(77) 

4 = 0, y = o ,  

x = o ,  
y = 0.5, 

x =  1, 

4 = s o  = ,ZS@-O.S) , 

4 = h(x),  
a4 - = 0, 
an 

where h(x) denotes the values of the series (74). 
Problem (77) has a boundary layer with parabolic profile iny = 0.5 and thickness O(J(DL/v)) = 13, 

where L is the characteristic length. Therefore we consider the interval [5 ,  151 as the interval of variation 
in the exponents to be represented in h. 
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We are interested in studying the L2 and H' errors for conforming and non-conforming irnplementa- 
tions. The bases and results are detailed in the following. 

(a) Two exponentials. Conforming mesh 

Basis 

(i) In direction x: Lo, L 1 ,  Lz. 
(ii) In direction y: Lo, L 1 ,  L2, es.lb-'), e10.13b-1) 

Errors 

(i) The L2 error of the function is 6.7134522025 x 
(ii) The L2 error of the derivatives is 3.786206781061368 x lop4. 
(iii) The H' error is 3.85334130308 x 

(b) Three exponentials. Conforming mesh 

Basis 

Errors 

(i) The L2 error is 3.235907714 x 
(ii) The L2 error of the derivatives is 1-93144815337 x 
(iii) The H' error is 1.96380723051 x 

(c) Two exponentials, Non-conforming mesh 

Basis 

(i) In direction x:  Lo, L1,  Lz. 
(ii) In direction y: Lo, L1, L2, elSb-'), e8bp1). 
(iii) In direction x: Lo, L1, Lz. 
(iv) In direction y:  Lo, L , ,  Lz, ego'-'), e3'J-l). 

Errors 

(i) The Lz error is 1.32 1395904674676 x 1 O-6.  
(ii) The L2 error of the derivatives is 4-969053032568501 x 

(iii) The H' error is 4.982266991615248 x lop4. 
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7.2.3. Problem 3: Boundary layer due to boundary conditions, with gradients in streamline 
directions. Finally, the following problem has been considered: 

Figure 13 shows the solution for D = 1 x lop6 and v = 1.0. The Peclet and Reynolds numbers are 
Pe = lo6 and Re = 66,225. 

In this problem the boundary layer is located on the boundary x = 1 in the streamline direction. The 
width is U(D/v) = We have taken an exponential with exponent 175 in direction x as the master 
element. This is equivalent to working in a domain with an exponential whose exponent is 350. 

8. CONCLUSIONS 

The technique presented in this work has the following properties, which have been numerically tested. 

1. Good representation of interior and boundary layers without oscillations. The computed L2 and 
H' errors show this fact. 

2. Good behaviour of the scheme when D decreases. 
3. Computational cost. 

(a) The generation of the mesh has the same cost as that of Delaunay-type non-structured mesh 
generators. 

(b) The number of quadrature points in each element is greater than that used in standard 
methods with polynomial approximations. However, since we need fewer elements, the total 
number of integration points on the whole domain is equivalent to that of other methods. 

(c) The number of degrees of freedom diminishes. 
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5. 
6. 

7. 

8. 

9. 

10. 

11. 
12. 
13. 
14. 
15. 

16. 

17. 

18. 
19. 

20. 

21. 

22 

Therefore the computational cost of the algorithm is similar to that of spectral and finite element 
methods as regards assembly of the matrix. However, concerning the solution of the algebraic 
system of equations, it is less. 
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